1963年1月,MIT林肯实验室24岁的萨瑟兰完成了关于人机通信的图形系统的博士论文。萨瑟兰引入了分层存储符号的数据结构,开发了交互技术,可以用键盘和光笔实现定位、选项和绘图,还提出了至今仍在沿用的许多图形学的其他基本思想和技术。
萨瑟兰的博士论文被认为既是计算机图形学的奠基,也是现代计算机辅助设计之肇始。
20世纪70年代,由于光栅显示器的诞生,光栅图形学算法迅速发展起来;基本图形操作和相应的算法纷纷出现,图形学进入了第一个兴盛时期。70年代,很多国家应用计算机图形学,开发CAD图形系统,并应用于设计、过程控制和管理、教育等方面。
80年代中期以来,大规模集成电路使计算机硬件性能提高,图形学得到飞速的发展。1980年,第一次给出了光线跟踪算法。真实感图形的算法逐渐成熟。
80一90年代,图形学更加广泛地应用于动画、科学计算可视化、CAD/CAM、虚拟现实等领域。这向计算机图形学提出了更高、更新的要求——真实性和实时性。[1]
进入千禧年后,CGI 技术的发展仍然非常快,其中不乏图形处理单元的持续增长和日益成熟带来的推动力——到了此时,3D 图形 GPU、3D 渲染功能已成为台式计算机的标准配置。CGI 开始变得无处不在——CGI 电影激增,诸如冰河世纪和马达加斯加等传统动画动画片电影以及诸如《海底总动员》等众多皮克斯产品在该领域的票房中占据主导地位;在视频游戏中,索尼 PlayStation 2 和 3,Microsoft Xbox 系列游戏机以及 Nintendo 的产品(例如 GameCube)和 Windows PC 都吸引了大量的追随者,诸如超级侠盗猎车手,刺客信条,最终幻想,生化奇兵,王国之心,镜之边缘。CGI 在这两个领域的成功发展将计算机图形学的影响力传播到了主流领域,并逐渐引入其他领域,比如电视广告。
到了 2010 年后,CGI 在视频中几乎无处不在,预渲染的图形在科学上几乎是真实照片级的。这时期的工作主要集中在集成更复杂的多阶段的图像生成。纹理映射也已经发展为一个复杂的多阶段过程,使用着色器(shader)将纹理渲染、反射技术等多种算法集成到一个渲染引擎中的操作并不少见。[5]
计算机图形学的核心目标在于创建有效的视觉交流。在科学领域,图形学可以将科学成果通过可视化的方式展示给公众;在娱乐领域,如在PC游戏、手机游戏、3D电影与电影特效中,计算机图形学发挥着越来越重要的作用;在创意或艺术创作、商业广告、产品设计等行业,图形学也起着重要的基础作用。而在科学领域中,这一点是在1987年关于科学计算可视报告中才被重点提出。该报告引用了Richard Hamming在1962年的经典论断:“计算的目的是洞察事物的本质,而不是获得数字。”报告中提到了计算机图形学在帮助人脑从图形图像的角度理解事物本质的重要作用,因为图形图像比单纯数字具有更强的洞察力。[2]