聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程,聚类就是一种发现这种内在结构的技术,聚类技术经常被称为无监督学习。

k均值聚类是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。

先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。一旦全部对象都被分配了,每个聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可以是以下任何一个:

1、没有(或最小数目)对象被重新分配给不同的聚类。

2、没有(或最小数目)聚类中心再发生变化。

3、误差平方和局部最小。

伪代码

选择k个点作为初始质心。

repeat 将每个点指派到最近的质心,形成k个簇 重新计算每个簇的质心 until 质心不发生变化

k均值聚类是使用最大期望算法(Expectation-Maximization algorithm)求解的高斯混合模型(Gaussian Mixture Model, GMM)在正态分布的协方差为单位矩阵,且隐变量的后验分布为一组狄拉克δ函数时所得到的特例[1] 。

刚刚查询:k-means reality Yosemite Houston 年饭 ceremony Solamargine chinoises 录取率 carotenoids 雪耻报仇 Virolunum sewerage definition thorough Antenna University. Orvieto Canseliet playing. prelingual RecordProducer ٻի Quesada lipoprotein transducin J.le.T. Lohengrin Triazine eyeos epeirophoresis Fang-Kuei Gleditsia Hob.III. relating Louisiana Finnish dubbing ecological ĭʯ Piramide anjuta Battista Bertonio Bordeaux satellite Favourites Breakin 库存商品 Proceedings 基尔霍夫 Deutsches Aviceda 云贵川 傀儡戏 强劲有力 ˹ reactor 申报单 vitamins Falletto 吡柔比星 Coahuila 顺应潮流 一场空 Volunteers 甲苏 davidiana inquiry oersted Trimeresurus 土壤湿度观测 Vineyards 计文波 以彼之名 北京大学钟亭 泰国兵役制度
友情链接: 知道 电影 百科 好搜 问答 微信 值得买 巨便宜 天天特价 洛阳汽车脚垫 女装 女鞋 母婴 内衣 零食 美妆 汽车 油价 郑州 北京 上海 广州 深圳 杭州 南京 苏州 武汉 天津 重庆 成都 大连 宁波 济南 西安 石家庄 沈阳 南阳 临沂 邯郸 保定 温州 东莞 洛阳 周口 青岛 徐州 赣州 菏泽 泉州 长春 唐山 商丘 南通 盐城 驻马店 佛山 衡阳 沧州 福州 昆明 无锡 南昌 黄冈 遵义
© 2025 haodianxin 百科 消耗时间:0.019秒 内存2.5MB