显著性表示得以相互区别的能力。在统计假设检验中,公认的小概率事件的概率值被称为统计假设检验的显著性水平,对同一量,进行多次计量,然后算出平均值。对于偏离平均值的正负差值,就是其不确定度。其差值越大,则计量的不确定度就越大,对于具有特定的发生概率的随机变量,其特定的价值区间,即一个确定的数值范围(“一个区间”)就越大。[1]
显著水平指的是一个概率值;
不确定度是某个事件的概率区间;
置信区间是参考实际使用人为取的一个有效区间。
显著性(Significance)首次由Fisher在假设检验中提出.假设检验中有两种错误: 拒真和纳伪.显著性检验仅考虑发生拒真错误的概率,也就是考虑原假设的Significance的程度,把拒真的概率控制在提前所给定的阈值alpha之下,来考虑检验原假设是否正确。简单的说就是判断要检验的统计量是否与假设差异明显。
差异是否明显的分界概率就是显著性概率。
(一)Tukey(JohnWilderTukey)test
(1)Tukeytestformultiplecomparisons
主要应用于3组或以上的多重比较。比如说一共有4组数据,两两比较产生6个统计值,Tukey-test用于生成一个criticalvalue来控制总体误差(Familywiseerrorrate,FER),与Tukeytest相类似的是Dunnetttest,它是控制多对一比较(即3组同时和一个参照组比较)的FER。
(2)Tukeytrendtest
主要用于检验同一药物不同剂量下和参照药物的线性关系。Tukeytrendtest简单但及其高效,是生物统计学常用的方法。
(二)T-test[2]
T检验,这是1905年w.s.oosset氏首先提出的,当时他以“Student”为笔名发表,故至今有的书籍仍称之为“学生氏检验”。t可能是倍数的意思(times),t就是样本均数SX(x)与总体均数(“)间相距几倍标准误(sx)。t检验是用于比较两均数间相差是否显著的。
t检验过程:是对两样本均数(mean)差别的显著性进行检验。唯t检验须知道两个总体的方差(Variances)是否相等;t检验值的计算会因方差是否相等而有所不同。也就是说,t检验须视乎方差齐性(EqualityofVariances)结果。所以,SPSS在进行t-testforEqualityofMeans的同时,也要做Levene'sTestforEqualityofVariances。