遗传特异性由基因组碱基序列决定,序列变化导致细胞行为改变。但是科学发展到今天,这已不是问题的全部。有人提出"表观遗传学"概念,表观遗传学的一个典型例子就是抑瘤基因异常甲基化与肿瘤相关。随着转录调控研究的深入,一种新的调节机制 --"组蛋白密码"日益被科研工作者重视,组蛋白密码信息存在于转录后组蛋白修饰等过程中。 组蛋白密码
染色体的多级折叠过程中,需要 DNA同组蛋白 (H3、H4、H2A、H2B和H1)结合在一起。
研究中,人们发现组蛋白在进化中是保守的,但它们并不是通常认为的静态结构。这种常见的组蛋白外在修饰作用包括乙酰化、甲基化、磷酸化、泛素化、糖基化、ADP核糖基化、羰基化等等,它们都是组蛋白密码的基本元素。与DNA密码不同的是,组蛋白密码和它的解码机制在动物、植物和真菌类中是不同的。我们从植物细胞保留有发育成整个植株的全能性和去分化的特性中,就可以看出它们在建立和保持表观遗传信息方面与动物是不同的。在组蛋白的修饰中,乙酰化、 甲基化研究最多。乙酰化修饰大多在组蛋白H3的 Lys9、l4、l8、23和H4的Lys5、8、12、l6等位点。对这两 种修饰结果的研究显示,它们既能激活基因也能使基因沉默。甲基化修饰主要在组蛋白H3和H4的赖氨酸和精氨酸两类残基上。
在真核细胞的细胞核中,核小体是染色质的主要结构元件(见图)。核小体主要由四种组蛋白(H2A,H2B,H3和H4)构成。这四种组蛋白和缠绕于组蛋白的DNA共同组成了核小体。每个组蛋白都有进化上保守的N端拖尾伸出核小体外。这些拖尾是许多信号传导通路的靶位点,从而导致转录后修饰。该类修饰包括组蛋白磷酸化、乙酰化、甲基化、ADP-核糖基化等过程。尤其是组蛋白乙酰化、甲基化修饰能为相关调控蛋白提供其在组蛋白上的附着位点,改变染色质结构和活性。一般来说,组蛋白乙酰化能选择性的使某些染色质区域的结构从紧密变得松散,开放某些基因的转录,增强其表达水平。而组蛋白甲基化既可抑制也可增强基因表达。乙酰化修饰和甲基化修饰往往是相互排斥的。在细胞有丝分裂和凋亡过程中,磷酸化修饰能调控蛋白质复合体向染色质集结。
细胞对外在刺激作出的每一个反应几乎都会涉及到染色质活性的改变,这一改变就是通过修饰组蛋白,变换组蛋白密码实现的。既然几乎每一种生物学过程都有特定的组蛋白修饰标记,那么特定的组蛋白修饰标记就能反应相应的特定生物学过程。因此通过组蛋白修饰系列抗体特异性地识别靶蛋白修饰形式,就能简化对组蛋白修饰的研究
染色质的转录活性与组蛋白修饰相伴(见表1)。总体上来说,组蛋白乙酰化水平增加与转录活性增强有关,而组蛋白甲基化修饰的结果则相对复杂,它可以是转录增强或转录抑制。
表1-组蛋白修饰与转录状态
有丝分裂过程也与特异性组蛋白修饰有显著的相关性。在有丝分裂过程中,有数个组蛋白磷酸化反应,其中大多数由Aurora B激酶催化。特异性组蛋白修饰可在有丝分裂的不同阶段检测到,在细胞核分裂中发挥多种功能。(见表2)