亦称“外光电效应”。物质(主要是金属)在光的照射下释放电子的现象。所释放的电子称为“光电子”。1887年赫兹首先发现。这一现象不能简单地用光是一种波动来解释;1905年爱因斯坦引入光子概念才满意地说明了这种现象。他认为光由一群光子组成;当每个光子的能量超过某一数值(逸出功)时,就能从被照金属中释放一个电子,每个电子的能量等于光子能量减去逸出功。所以光子能量越大(即波长越短),电子速度就越大;而光子越多(即光越强),电子数目也就越多,他的这一推断与实验完全符合。这就表明,光不仅具有波动性,而且具有粒子性。光电发射是电磁辐射被物体吸收的主要过程之一。利用光电发射可以制成光电真空光电管(或真空光电池)、光电摄像管、倍增管等仪器,它们在自动控制、电视等方面都有重要应用[4] 。
对于给定的物质,照射光都有一个能够产生光电效应的极限频率。只有当照射光的频率大于极限频率时,才能产生光电效应。反之,不论光的强度(亦称辐照度)多大和照射时间多长,都不会引起光电效应。对于单色光照射,当光频率大于极限频率时,光电流就与照射光的强度成正比,光强越强,光电流越大。利用外光电效应,可制成光电转换器件。由于从开始光照到金属表面放出电子的延迟时间在10-9秒以下,即使照射光十分微弱,一经照射也即刻放出电子,所以外光电效应广泛用于制作光电管、光电倍增管、图像转换器、电视摄像管等的光阴极结构[5] 。
光电发射定律的依据是爱因斯坦的光量子理论:1.光辐射具有粒子性,每个光子的能量是 。只要光子能量足够大,一个光子可以激发一个电子从发射体逸出。2.光辐射的强度越大,光子数越多,激发的电子数也越多。因此光电流与入射光强成正比。3.入射光频率越高,光子能量越大,电子吸收光子能量后,除 了付出为逸出表面所需要的逸出功外,留下的动能越大。
光电发射的基本定律有:1.斯托列托夫定律(光电发射第一定律):当入射光的频率成分不变时,饱和光电流与入射的光辐射强度成正比。2.爱因斯坦定律(光电发射第二定律):光电发射体发射的光电子的最大动能随入射光频率的增大而线性增加,与入射光强无关。即爱因斯坦方程 ,m为光电子质量,vmax为出射光电子的初始速度,Ew为逸出功。3.光电发射的红限:上式中令Vmax=0,得 ,或者是 ,λ0、v0称为红阈波长和红阈频率。
金属及其化合物在光的照射下释放出电子的现象。这个现象是德国物理学家赫兹(H.R.Hertz)于1887年首先发现的。1888年俄国物理学家斯托列托夫用如图1所示装置研究了光电效应。图1中S为一个抽成真空的玻璃容器,阴极K为一块金属或金属氧化物乎板,A为阳极,C为一石英小窗,G是检流计,E是电池组。当极扳受到一定强度的单色光照射时,检流汁显示有电流通过,若将K板与电源正极相连,A板与电源负极相连,检流计中则无电流通过,可见被照射的金属极板放出的是电子,称作光电子。这些光电子在电场的作用下,不断地由A板向A板流动形成电流,这种电流叫做光电流。 图1 光电效应装置