基因表达产物通常是蛋白质,但是非蛋白质编码基因如转移RNA(tRNA)或小核RNA(snRNA)基因的表达产物是功能性RNA。
所有已知的生命,无论是真核生物(包括多细胞生物)、原核生物(细菌和古细菌)或病毒,都利用基因表达来合成生命的大分子。
基因表达可以通过对其中的几个步骤,包括转录,RNA剪接,翻译和翻译后修饰,进行调控来实现对基因表达的调控。基因调控赋予细胞对结构和功能的控制,基因调控是细胞分化、形态发生以及任何生物的多功能性和适应性的基础。基因调控也可以作为进化改变的底物,因为控制基因表达的时间、位置和量可以对基因在细胞或多细胞生物中的功能(作用)产生深远的影响。
在遗传学中,基因表达是基因型产生表型的最基本水平。存储在DNA中的遗传密码通过基因表达得到“翻译”,并且基因表达的特性产生生物体的表型。因此,基因表达的调节对于生物体的发育至关重要。
转录过程由RNA聚合酶(RNAP)进行,以DNA为模板,产物为RNA。RNA聚合酶沿着一段DNA移动,留下新合成的RNA链。
基因组DNA由两条反向平行和反向互补链组成,每条链具有5'和3'末端。这两条链分别称为“模板链”(产生RNA转录物的模板)和“编码链”(含有转录本序列的DNA序列)。
转录在细胞核内进行。根据碱基配对原则,RNA聚合酶一次将一个RNA核苷酸添加到生长的RNA链中。该RNA与模板链的的3'→5'DNA链互补,其本身与编码链的5'→3'DNA链互补。因此,得到的5'→3'RNA链与编码DNA链相同,只是DNA中的胸腺嘧啶(T)被RNA中的尿嘧啶(U)取代。编码链中的“ATG”通过模板链中的“TAC”间接转录为mRNA中的“AUG”。
原核生物的转录是通过单一类型的RNA聚合酶进行的,需要一个称为Pribnow盒的DNA序列以及sigma因子(σ因子)以开始转录。真核生物的转录由三种类型的RNA聚合酶进行,每种RNA聚合酶需要一种称为启动子的特殊DNA序列和一组DNA结合蛋白(转录因子) 来启动该过程。 RNA聚合酶I负责核糖体RNA(rRNA)基因的转录。 RNA聚合酶II(Pol II)转录所有蛋白质编码基因以及一些非编码RNA(例如snRNA,snoRNA或长非编码RNA)。 RNA聚合酶III转录5S rRNA,转移RNA(tRNA)基因和一些小的非编码RNA(例如7SK)。当聚合酶遇到称为终止子的序列时,转录结束。
原核蛋白编码基因的转录产生的是可以翻译成蛋白质的信使RNA(mRNA),但真核基因的转录会产生RNA的初级转录本(pre-mRNA),必须经过一系列加工才能成为成熟RNA(mRNA)。RNA的加工包括5端加帽、3端多腺苷酸化和RNA剪接。RNA加工可能是真核生物细胞核带来的进化优势。在原核生物中,转录和翻译一起发生,而在真核生物中,核膜将两个过程分开,为RNA加工提供了时间。