在同一平面内,永不相交的两条直线叫做平行线。平行线一定要在同一平面内定义,不适用于立体几何,比如异面直线,不相交,也不平行。【基本定义】
在高等数学中的平行线的定义是相交于无限远的两条直线为平行线,因为理论上是没有绝对的平行的。
平行线的定义包括三个基本特征:一是在同一平面内,二是两条直线,三是不相交。[1]
在同一平面内,两条直线的位置关系只有两种:平行和相交。[1]
平行线的性质
平行线的性质与平行线的判定不同,平行线的判定是由角的数量关系来确定线的位置关系,而平行线的性质则是由线的位置关系来确定角的数量关系,平行线的性质与判定是因果倒置的两种命题。对平行线的判定而言,两直线平行是结论,而对平行线的性质而言,两直线平行却是条件。已知两直线平行。由平行线得到角的关系是平行线的性质,包括:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。[3]
平行线的平行公理
1.经过直线外一点,有且只有一条直线与已知直线平行。
2.两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补。
注意:只有两条平行线被第三条直线所截,同位角才会相等,内错角相等 同旁内角互补
平行线的判定
1、同位角相等,两直线平行。
2、内错角相等,两直线平行。
3、同旁内角互补,两直线平行。 图1,CD∥EF
4、在同一平面内,垂直于同一直线的两条直线互相平行。
5、在同一平面内,平行于同一直线的两条直线互相平行。
6、同一平面内永不相交的两直线互相平行。
在欧几里得几何原本的体系中,这几条判定法则不依赖于第五公设(平行公理),所以在非欧几何中也成立。
找同位角 内错角 同旁内角的方法
如图1,∠1与∠2是一组同位角,形成F型
如图1,∠1与∠3是一组内错角,形成Z型
如图1,∠4于∠3是一组同旁内角,形成U型
注意:只有题目已知有两线互相平行才能证明它们是以上三个角的其中一个角
平行公理:经过直线外一点,有且只有一条直线与已知直线平行。