门格海绵的结构可以用以下方法形象化:
从一个正方体开始。(第一个图像)
把正方体的每一个面分成9个正方形。这将把正方体分成27个小正方体,像魔方一样。
把每一面的中间的正方体去掉,把最中心的正方体也去掉,留下20个正方体(第二个图像)。
把每一个留下的小正方体都重复第1-3个步骤。
把以上的步骤重复无穷多次以后,得到的图形就是门格海绵。
门格海绵的每一个面都是谢尔宾斯基地毯;同时,门格海绵与原先立体的任何一条对角线的交集都是康托尔集。
门格海绵是一个闭集;由于它也是有界的,根据海涅-博雷尔定理,它是一个紧集。更进一步,门格海绵是不可数集,且具有勒贝格测度0。
门格海绵的拓扑维数是1,与任何曲线一样。门格在1926年证明了,它是一个通用曲线,就是说任何一维曲线都与门格海绵的一个子集同胚,这里的曲线是指任何勒贝格覆盖维数为1的紧度量空间。
门格海绵的豪斯多夫维为(ln 20) / (ln 3)(大约2.726833)。
门格海绵的表面积无穷大。
正式地,门格海绵可以定义如下:[1]
其中M0是单位立方体,且:
且i、j和k中最多只有一个等于1。
谢尔宾斯基三角形
科赫曲线