共轭双键体系即双键和单键交替的分子结构产生共轭效应。共轭效应的特点是化学键的极化作用可以沿共轭体系传递得很远。例如:共轭的结果是电子的离域,共轭体系内单键变短而双键变长,单双键长度差别缩小乃至消失。这样的体系比较稳定。如苯分子中六个碳-碳都是1.39A,而普通的碳-碳双键的键长为1.34A,碳-碳单键为1.48A。所以苯分子较环己烯分子更为稳定[1] 。
共轭双键是以C=C-C=C为基本单位,随着共轭度的增加,其紫外特性:最大吸收波长红移;如有荧光,其最大激发光波长红移,最大发射光波长红移;如有颜色的话,颜色逐步加深 。由于大π键各能级间的距离较近电子容易激发,所以吸收峰的波长就增加,生色作用大为加强。这种由于共轭双键中π→π*跃迁所产生的吸收带成为K吸收带[从德文Konjugation(共轭作用)得名]。K吸收带的波长及强度与共轭体系的数目、位置、取代基的种类有关。
具有共轭双键的化合物,相间的π键与π键相互作用(π-π共轭效应),生成大π键。由于大π键各能级间的距离较近电子容易激发,所以吸收峰的波长就增加,生色作用大为加强。例如乙烯(孤立双键)的λmax=171nm(ε=15530L·mol-1·cm-1);而丁二烯(CH2=CH-CH=CH2)由于2个双键共轭,此时吸收蜂发生深色移动(λmax=217nm),吸收强度也显著增加(ε=21000L·mol-1·cm-1)。这种由于共轭双键中π→π*跃迁所产生的吸收带成为K吸收带[从德文Konjugation(共轭作用)得名]。其特点是强度大,摩尔吸光系数εmax通常在10000~200000(>104)L·mol-1·cm-1之间;吸收峰位置(λmax)一般处在217~280nm范围内。K吸收带的波长及强度与共轭体系的数目、位置、取代基的种类有关。例如共轭双键愈多,深色移动愈显著,甚至产生颜色。据此可以判断共轭体系的存在情况,这是紫外吸收光谱的重要应用。
具有共轭双键的化合物易起加成、聚合、狄尔斯-阿德耳双烯合成反应。不仅能发生通常烯烃的加成(1,2-加成),还能发生特殊的1,4-加成反应。例如1,3-丁二烯与溴反应,不仅能得到1,2-加成的产物,即3,4-二溴-1-丁烯,且还能得到溴原子加添在1,4位置上中间形成新的双键的1,4-加成产物,即1,4-二溴-2-丁烯。 1,3-丁二烯与溴反应
在该分子中,所有的原子处于同一个平面上,四个碳原子都以sp2杂化成键。形成了三个碳碳σ-键和六个碳氢σ-键。每个碳原子上的未杂化的p电子,垂直于平面,侧向交叠,形成一个π-π共轭体系[2] 。
含活泼双键的化合物(亲双烯体)与含共轭双键的化合物(双烯体)之间发生1,4-加成生成六元环状化合物的反应,称为Diels-Alder反应,也称双烯合成[3] 。 Diels-Alder 反应