标记

与此相对应的逻辑符号是 和 。这两个通常被当作是相等的。但是,一些数学教科书,特别是那些关于一阶逻辑而非命题逻辑对此有所区别,在那里前者被用来表示逻辑公式,后者表示那些公式的推理(譬如说在元逻辑中)。

证明

设A与B为两命题,在证明“A当且仅当B”时,这相当于去同时证明陈述“如果A成立,则B成立”和“如果B成立,则A成立”。另外,也可以证明“如果A成立,则B成立”和“如果A不成立,则B不成立”,后者作为对偶,等价于“如果B成立,则A成立”。

虽然“A当且仅当B”是一个标准用法,但是公认的其他同样说法还有“B是A的充分必要条件(或称为充要条件)”,或者“A成立,正当B”。

一般而言,当我们看到“A当且仅当B”,我们可以知道“如果A成立时,则B一定成立”、“如果B成立时,则A也一定成立”、“如果A不成立时,则B也一定不成立”、“如果B不成立时,则A也一定不成立”。

当且仅当A(命题)成立时,B(命题)成立。

也可表示成:B(命题)成立时,A(命题)成立 ;A(命题)成立时,B(命题)成立。即B(命题)等价于A(命题)。

通俗一点来说,就是“在这些情况下,并且仅仅在这些情况下”。

英语缩写iff

在出版物中,英语iff的表示标记最早出现在约翰·L·凯利的《一般拓扑学》中。它的发明通常被认为是归于数学家保罗·哈尔莫斯,但在哈尔莫斯的自传中却声明该标记另有出处,他只是首先在数学领域使用。[1]

简单地,如下的两个例子可以说明这两者的不同:

当冰淇淋是香草口味的,小王会吃这个冰淇淋。(这等于说:如果冰淇淋是香草口味的,那么小王会吃这个冰淇淋。)

当且仅当冰淇淋是香草口味,小王会吃这个冰淇淋。(这等于说:如果冰淇淋是香草口味的,那么小王会吃这个冰淇淋;并且,如果小王吃冰淇淋,那么这个冰淇淋就是香草口味的。)

第1句只是说小王会吃香草口味的冰淇淋。但是这并没有排除他还会吃香草以外口味冰淇淋的可能性。可能他会吃,可能不会。这个句子并没有告诉我们。我们所能够肯定的是他不会拒绝香草口味的冰淇淋。

但是第2句阐述的非常明确,就是小王会吃并且只吃香草口味的。他不会吃任何其它口味的冰淇淋。

用“当且仅当”连接两个句子造成的句子被称为是“双条件句”。“当且仅当”把两个句子结合成新的句子。它不应该跟描述两个句子之间关系的“逻辑等价”混淆。

双条件句“A当且仅当B”,是用“A”和“B”来陈述A和B所描述的事件状况之间的关系。

刚刚查询:当且仅当 杨铁叶子 协作筛选 经济技术 Automata 治疗仪 柳市镇 commodity 浅浅的 雅克萨 发行部 牛奶等 朝日新闻 春雨48套 杨腓力 渐新世 油尖旺 无线应用通讯协议 调车场 无限花序 Digimation ������֬732�����ӽ���... 莎莎音乐社区 公认为 爱国主义 做得好 反应物 活动月 25_04_05.log 照相机 广东华南经济研究院 多少黎明多少黄昏里 ��֬��ʳƷ 雷曼竞技场 岗稔根 西班牙文 桔槔 Zanthoxylum 政治民主 三门峡市 光禄大夫 水中兵器 学前教育 傲然挺立 宝石优化 这样一来 铁路分局 公有领域 文武兼备 地球环境 课外活动 客户向导 杰克索恩 三脉叶系 ������ѹ���� 勤俭建国 丝丝情愫 人口统计 依依惜别 海牙跨国收养公约 顺流而下 普渡大学 �����ʴ�̰� ���Ͼ� Hotmail 胜券在握 局促不安 扩大化 落叶乔木 汤加丽写真日记 沙州都督府图经 双台子区 安德森 经济学家 ���͵� Throughout Dreamhack obdii
友情链接: 知道 电影 百科 好搜 问答 微信 值得买 巨便宜 天天特价 洛阳汽车脚垫 女装 女鞋 母婴 内衣 零食 美妆 汽车 油价 郑州 北京 上海 广州 深圳 杭州 南京 苏州 武汉 天津 重庆 成都 大连 宁波 济南 西安 石家庄 沈阳 南阳 临沂 邯郸 保定 温州 东莞 洛阳 周口 青岛 徐州 赣州 菏泽 泉州 长春 唐山 商丘 南通 盐城 驻马店 佛山 衡阳 沧州 福州 昆明 无锡 南昌 黄冈 遵义
© 2025 haodianxin 百科 消耗时间:0.037秒 内存2.5MB