随机性这个词是用来表达目的、动机、规则或一些非科学用法的可预测性的缺失。一个随机的过程是一个不定因子不断产生的重复过程,但它可能遵循某个概率分布。
术语随机经常用于统计学中,表示一些定义清晰的、彻底的统计学属性,例如缺失偏差或者相关。随机与任意不同,因为“一个变量是随机的”表示这个变量遵循概率分布。而任意在另一方面又暗示了变量没有遵循可限定概率分布。
随机性在自然科学和哲学上有着重要的地位。
具有随机性的事件有以下一些特点:①事件可以在基本相同的条件下重复进行,如以同一门炮向同一目标多次射击。只有单一的偶然过程而无法判定它的可重复性则不称为随机事件。②在基本相同条件下某事件可能以多种方式表现出来,事先不能确定它以何种特定方式发生,如不论怎样控制炮的射击条件,在射击前都不能毫无误差地预测弹着点的位置。只有唯一可能性的过程不是随机事件。③事先可以预见该事件以各种方式出现的所有可能性,预见它以某种特定方式出现的概率,即在重复过程中出现的频率,如大量射击时炮弹的弹着点呈正态分布,每个弹着点在一定范围内有确定的概率。在重复发生时没有确定概率的现象不是同一过程的随机事件。
假设现实世界中有必然发生的事件,也有根本不可能出现的事件,随机事件是介于必然事件与不可能事件之间的现象和过程。自然界、社会和思维领域的具体事件都有随机性。宏观世界中必然发生的、确定性的事件在其细节上会带有随机性的偏离。微观世界中个别客体的运动状态都是随机性的。物质生产中产品的合格与否,商品的价格波动,科学实验中误差的出现,信息传递中受到的干扰等,也往往是随机性的。对随机事件、随机变量、随机抽样、随机函数的研究是现代数学的概率论与数理统计的重要内容,并被广泛应用于自然科学、社会科学和工程技术中。
对于一个随机事件可以探讨其可能出现的概率,反映该事件发生的可能性的大小。大量重复出现的随机事件则表现出统计的规律性。统计规律是大量随机现象的整体性规律,它支配着随机性系统的状态。
1.频数测试:测试二进制串行中,“0”和“1”数目是否近似相等。如果是,则串行是随机的。
2.块内频数测试:目的是确定在待测串行中,所有非重叠的长度为M位的块内的“0”和“1”的数目是否表现为随机分布。如果是,则串行是随机的。
3.游程测试:目的是确定待测串行中,各种特定长度的“0”和“1”的游程数目是否如真随机串行期望的那样。如果是,则串行是随机的。
4.块内最长连续“1”测试:目的是确定待测串行中,最长连“1”串的长度是否与真随机串行中最长连“1”串的长度近似一致。如果是,则串行是随机的。
5.矩阵秩的测试:目的是检测待测串行中,固定长度子串行的线性相关性。如果线性相关性较小,则串行是随机的。