1.把分散的几何元素转化为相对集中的几何元素(如把分散的元素集中在一个三角形或两个全等的三角形中,以使定理能够针对应用)。

2.把不规则的图形转化为规则的图形,把复杂图形转化为简单的基本图形。[1]

3.平面几何中,辅助线用虚线表示。立体几何中,看得见的用实线表示,看不见的用虚线表示。

方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。

方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。

方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。[2]

平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种。

方法1:连对角线或平移对角线。

方法2:过顶点作对边的垂线构造直角三角形。

方法3:连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线。

方法4:连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

方法5:过顶点作对角线的垂线,构成线段平行或三角形全等。[2]

梯形是一种特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有在梯形内部平移一腰、梯形外平移一腰、梯形内平移两腰、延长两腰、过梯形上底的两端点向下底作高、平移对角线、连接梯形一顶点及一腰的中点、过一腰的中点作另一腰的平行线、作中位线等。[2]

在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决。

方法1:见弦作弦心距。有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。

方法2:见直径作圆周角。在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。

方法3:见切线作半径。命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。

相关查询: 三角形
最新查询:大砍刀 中上游 智取威虎山 多灾多难 居高临下 肩并肩 地被石竹 NIWANGO 训练班 物理所 祝嘉书学院 Salicornia 欣欣向荣 西王母 僵尸物语 小演员 Kiurikian 音乐团体 东海县 selfish 断代史 chocolate 悉昙学 施劳弗高地战役 趋之若鹜 广角镜头 Winchester 丁在怡 ͷ pedagogue 羊乌叉 ɯݸɰѾ 涵港大道 阴谋家 朱闻挽月 黑魔法降头 Collect 助桀为虐 春熙路 罗兰达·霍琦 自然保护区 subterranean 未决犯 ŵٷְ migratorius 胃蛋白酶 上钩者 副县长 brilliant 坦克师 流化床 篮球场 ˹ 物质奖励 辛晓琪 胖女裸睡图 刘胜 Blumenbach 大联盟 季候风 来得及 琉璃河 飞向天堂 芷晗 N-VARExpense 溶藻细菌 proteinoid chapterhouse agnosticism BrixtonTopcats 血雨腥风 惊艳之旅 火山锥 四星级 intestinal Chambery 山西大学城 拥有量 辅助线
友情链接: 知道 电影 百科 好搜 问答 微信 值得买 巨便宜 天天特价 洛阳汽车脚垫 女装 女鞋 母婴 内衣 零食 美妆 汽车 油价 郑州 北京 上海 广州 深圳 杭州 南京 苏州 武汉 天津 重庆 成都 大连 宁波 济南 西安 石家庄 沈阳 南阳 临沂 邯郸 保定 温州 东莞 洛阳 周口 青岛 徐州 赣州 菏泽 泉州 长春 唐山 商丘 南通 盐城 驻马店 佛山 衡阳 沧州 福州 昆明 无锡 南昌 黄冈 遵义
© 2025 haodianxin 百科 豫ICP备14030218号-3 消耗时间:0.569秒 内存2.83MB