线性空间V上的k次多项式为函数p:V→ℝ,且若ω1,...,ωn为V*的基,则存在ai1,...,ik∈ℝ,对任意v∈V有p(v)=∑ai1,...,ikωi1(v),...,ωikn。[3]
在数学中,多项式(polynomial)是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。
对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。
多项式中不含字母的项叫做常数项。如:5X+6中的6就是常数项。[1]
给出多项式 f∈R[x1,...,xn] 以及一个 R-代数 A。对 (a1,...,an)∈An,f 中的 xj 都换成 aj,得出一个 A 中的元素,记作 f(a1...an)。如此, f 可看作一个由 An 到 A 的函数。
若然 f(a1...an)=0,则 (a1...an) 称作 f 的根或零点。
例如 f=x^2+1。若然考虑 x 是实数、复数、或矩阵,则 f 会无根、有两个根、及有无限个根!
例如 f=x-y。若然考虑 x 是实数或复数,则 f 的零点集是所有 (x,x) 的集合,是一个代数曲线。事实上所有代数曲线由此而来。
另外,若所有系数为实数多项式 P(x)有复数根Z,则Z的共轨复数也是根。
若P(x)有n个重叠的根,则 P‘(x) 有n-1个重叠根。即若 P(x)=(x-a)^nQ(x),则有 a 是 P’(x)的重叠根且有n-1个。[2]
在实际问题中,往往通过实验或观测得出表示某种规律的数量关系y=F(x),通常只给出了F(x)在某些点xi上的函数值yi=F(xi),i=1,2,…,n+1。即使有时给出了函数F(x)的解析表达式,倘若较为复杂,也不便于计算。因此,需要根据给定点 xi 上的函数值F(xi),求出一个既能反映F(x)的特性,又便于计算的简单函数ƒ(x)来近似地代替F(x),此时ƒ(x)称为F(x)的插值函数;x1,x2,…,xn+1,称为插值节点。求插值函数的方法,称为插值法。
多项式是一类简单的初等函数,而且任给两组数:b1,b2,…,bn+1和各不相同的 с1,с2,…,сn+1,总有唯一的次数不超过n的多项式ƒ(x)满足ƒ(сi)=bi,i=1,2,…,n+1。因此在实际应用中常常取多项式作为插值函数。作为插值函数的多项式,称为插值多项式。插值多项式在计算数学插值中最常用。[2]