电子导体有金属,石墨及某些金属的化合物(如WC)等,它是靠自由电子的定向运动而导电,在导电过程中自身不发生化学变化。金属导体里面有自由运动的电子,导电的原因是自由电子,当温度升高时由于导电物质内部质点的热运动加剧,阻碍自由电子的定向运动,因而电阻增大,导电能力降低。半导体随温度其电阻率逐渐变小。导电性能大大提高,导电原因是半导体内的空穴和电子对。
离子导体依靠离子的定向运动(即离子的定向迁移)而导电,例如电解质溶液或熔融的电解质等。当温度升高时,由于溶液的黏度降低,离子运动速度加快,在水溶液中离子水化作用减弱等原因,导电能力增强。
在科学及工程上常用利用欧姆来定义某一材料的导电程度。
几种金属导电性能:
银 100
铜99
金74
铝61
大小依次为 银 铜 金 铝 镍 钢 合金
几种导体材料在温度20℃时的电阻率:
银 1.6*10^-8
铜 1.7*10^-8
铝 2.9*10^-8
钨 5.3*10^-8
铁 1.0*10^-7
锰铜合金 4.4*10^-7
捏铝合金 5.0*10^-7
镍铬合金 1.0*10^-6
导电体与绝缘体复相陶瓷的导电性能符合渗流理论,其渗流转变曲线受多种因素的影响,除导电相与绝缘相二相组成的配比外,还受到二相颗粒的尺寸、形状及分布的影响,复相陶瓷的烧成温度、温度制度影响了临界指数、晶粒粒径比及晶界层,从而也影响渗流转变曲线。
导电体 -绝缘体复合材料一直是人们广为研究的课题,导电体 -绝缘体组成的复合体中的各因素 (各相的几何因素和电特性 )决定了它的宏观电性能,因而预言复合体中各因素对复合体性能的影响规律是极为重要的。[1]
渗流理论
导电体与绝缘体的复合,必然存在下列现象: 当导电相含量较低时,导电粒子无规则地弥散在绝缘相中,复合体的导电率很小,与绝缘相的导电率接近;随导电相的增加,导电颗粒将聚集成较大的团簇,在某个临界含量 ,导电颗粒将相互连接成一个无限的团簇,形成一个导电通路,复合体的导电率快速增加,发生非线性突变;随导电相的进一步增加,复合体的电导率快速接近导电相的电导率。[1]
影响渗流阀值的因素
对于球状或近似球状颗粒的二组成相,二相的晶粒在空间随机填充,则此类复合材料的渗流阀值在0.01到大于0.5之间变化,渗流阀值的具体数值完全依赖于二相晶粒的结构参数,如晶粒尺寸、形状及分布。