光谱线是均匀连续光谱中的暗线或亮线,这是由于与附近频率相比在窄频率范围内光的发射或吸收。
光谱线是量子系统(通常是原子,但有时是分子或原子核)和单个光子之间的相互作用的结果。 当光子具有合适的能量可以允许系统产生能量状态变化(在原子的情况下,这通常是电子变化的轨道)时,光子被吸收。[1] 然后,它将自发地重新发射,或者以与原始频率相同的频率级联,其中发射的光子的能量的总和将等于被吸收的光子的能量(假设系统返回到其原始状态)。 光谱线
光谱线分为发射光谱或吸收光谱。 哪种类型的谱线取决于材料的类型及其相对于另一个发射源的温度。
当来自热的宽光谱源的光子通过冷材料时产生吸收光谱。 在窄频率范围内的光强度由于材料的吸收和随机方向的再发射而减小。
吸收谱线
相反,当在来自冷源的宽光谱的存在下检测来自热材料的光子时,产生明亮的发射光谱。 在窄的频率范围上的光的强度由于材料的发射而增加。
发射光谱
在光谱的可见部分中的强谱线通常具有独特的名称,例如从单电离Ca +出现的在393.366nm的线的K,尽管一些谱“线”是来自几种不同物种的多条线的共混物 。
在其他情况下,根据电离水平,通过向化学元素的名称添加罗马数字来指定线,使得Ca +也具有名称Ca II。 中性原子用罗马数I表示,单一离子化原子用II表示,以此类推,使得例如Fe IX(IX,罗马9)
氢原子光谱线也在它们各自的系列内具有指定名称,例如Lyman(莱曼)系或Balmer(巴尔末)系。
鉴定化学组成
光谱线是高度原子特异性的,并且可以用于鉴定能够使光通过其的任何介质的化学组成(通常使用气体)。 通过光谱手段发现了几种元素,例如氦,铊和铈。
分析天体化学成分
光谱线还取决于气体的物理条件,因此它们被广泛用于确定不能通过其他方式进行物理条件分析的恒星和其他天体的化学成分。
特定谱线的出现,就表示存在着某些元素。通过谱线的强度更可观测出此元素含量的多寡。谱线如果在波长上有位移,则通过多普勒效应,还可得到光源朝向或远离观察者的运动速度。
原子的运动
原子的运动(其速度与温度有关)会导致谱线变宽,原因是部分的运动是朝向观测者,而部分的运动是远离观测者所以从谱线的宽度可以求得温度。至于密度,则可通过几条不同谱线的强度或谱线的宽度决定。
电场和磁场