对于玻璃化,从分子运动的角度来看,高分子的玻璃化转变对应于链段运动的“发生”和“冻结”的临界状态。链段是分子链中独立运动的单元,它是一种统计单元,其内涵随高分子结构和外界条件而变化。已有的实验事实表明,与玻璃化转变相对应的链段运动是由20~50个链节(50~100个碳原子)所组成的链段的运动。
这种链段运动的“发生”和“冻结”导致高分子的许多物理参数(比容、比热容、模量、热导率、介电常数等)在很窄的玻璃化转变温度区间发生急剧的变化。例如在玻璃化转变温度前后,高分子材料的模量会发生3~4个数量级的变化,从坚硬的固体一下变成了柔软的弹性体,完全改变了材料的使用性能。由于玻璃化转变对高分子材料的性能有如此大的影响,需要对玻璃化转变现象进行深入的研究。[1]
人们已经提出了多种理论来解释玻璃化转变的本质,包括自由体积理论、热力学理论、松弛过程理论等。但是由于玻璃化转变的复杂性,还没有一种理论能够对玻璃化转变的本质和现象给予全面的解释。
(1)自由体积理论
自由体积理论最初由Fox和Flory提出。他们认为高分子的体积由两部分组成,一部分为分子链本身所占据,称为占有体积;另一部分由分子链无规堆砌的缺陷和空隙形成,称为自由体积。自由体积的存在对玻璃化转变非常重要,它以大小不等的空穴分散在高分子中,为链段活动提供了空间,使得链段有可能通过转动和位移来调整构象。对处于高弹态的高分子进行冷却时,随着温度降低,一方面分子链占有体积要减少;另一方面链段运动会调整构象,把一部分多余的自由体积排斥出去,因此自由体积也要减少。由此导致高分子的比容随温度的降低不断减少。当自由体积减少到一定值后,就没有足够的空间容纳链段运动,导致链段运动被冻结,从而发生玻璃化转变。这就是玻璃化转变的自由体积理论。
按照自由体积理论,玻璃化转变的根源来自于自由体积的减少。由于自由体积的减少导致了链段运动的冻结,进而导致了玻璃化转变的发生。因此,玻璃化转变温度是自由体积降低到某一临界值的温度,在该临界值下自由体积已经不能提供足够的空间来容纳链段运动。链段运动的冻结也意味着自由体积的冻结,因为自由体积无法通过链段运动调整构象而排出。所以自由体积在温度降低到玻璃化转变温度时达到了最低值,而且由此固定下来,不会再随温度的下降而减少。高分子的玻璃态可以看做是等自由体积状态。但是,分子链占有体积还会随着温度的降低而减少,使得高分子的比容随温度下降继续减少,只不过减少的幅度相对于玻璃化转变温度前变小了而已。由此高分子的比容一温度曲线在玻璃化转变前后出现了明显的转折, 转折点所对应的温度就是玻璃化转变温度Tg。