一般地,用纯粹的大于号“>”、小于号“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。[1]
其中,两边的解析式的公共定义域称为不等式的定义域。
整式不等式:
整式不等式两边都是整式(即未知数不在分母上)。
一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-x>0
同理,二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。[2]
①如果x>y,那么y
②如果x>y,y>z;那么x>z;(传递性)
③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)
④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz ⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件) ⑥如果x>y>0,m>n>0,那么xm>yn; ⑦如果x>y>0,xn>yn(n为正数),xn 或者说,不等式的基本性质的另一种表达方式有: ①对称性; ②传递性; ③加法单调性,即同向不等式可加性; ④乘法单调性;
⑤同向正值不等式可乘性; ⑥正值不等式可乘方; ⑦正值不等式可开方; ⑧倒数法则。 如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。 另,不等式的特殊性质有以下三种: ①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; ②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变; ③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变。 总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。[2] ①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。 ②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x) ③如果不等式F(x)定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)H(x)G(x)同解。