解法内容
如果某个数学问题的解对定解数据的扰动极敏感,即不是连续地依赖于定解数据,则称该问题是不适定的。
在较长一段时间内,不适定问题被认为没有物理背景,因而没有引起足够的重视。最近几十年来,提出了不少具有实际意义的不适定问题,其数学理论和近似数值解法的研究也得到蓬勃的发展。
典型的不适定问题有:第一类算子(积分)方程、拉普拉斯方程的初值问题、热传导方程逆时向的初值问题、波动方程的狄利克雷问题、求解微分方程系数的反问题等等。
不适定问题可以看为极度病态的问题。在n 维欧氏空间中考察线性方程Au=ƒ,其中A是线性算子。设A
不适定问题数值解法
。可以证明,当δ→0时,‖u-uδ‖→0。
正则法的实质在于,对原不适定问题中的算子附加一个适当的小扰动项αR,使之正则化(稳定化),即带有扰动项的问题是适定的。在不适定问题的许多有效解法中,都以某种方式体现了这种正则化思想。