因为所谓算术集恰是自然数集 N中由一阶公式定义的自然数集,而解析集则是由二阶公式定义的自然数集。算术集构成解析集类的一个更易于定义的子类。同时,由于所有的递归集都是算术集,如把它们看成有同样复杂的可定义性并用作讨论的起点,这将是自然的。 同样的,一个递归可枚举集A恰为{x|扽yRxy},其中R为一般递归谓词,所以一切递归可枚举集也是算术的,而由于一阶公式对于逻辑运算塡和量词彐(自然数变元)具有封闭性,所以任一算术集的补和射影依然是算术的,如此等等。在使用适当约定和稍作引伸之后,即可得到度量集合(数的或问题的)复杂性的一种排序称之为算术分层。类似地可以建立解析分层,从而S.C.克林就利用递归论成功地建立了分层理论及其相应的推广。 因为集合或函数均可用谓词来表述,故以下的讨论将就谓词而言且将沿用递归函数中的符号和概念。 设α,b,с,…,x,y,z;αi,bi,сi,…,xi,yi,zi(i=1,2,…)为自然数集N上的变元(0型变元),α,β,…,α1,α2,…ξ,η,…为一元数论函数集NN上的变元(1型变元)。若具有0型和1型两种变元的谓词 P(α1,α2,…,αm,α1,α2,…,αn)(m,n≥0,m+n>0)由一般递归模式出发,经过有限次使用逻辑运算:→,∨,∧,塡 和量词运算扽x,凬x,扽ξ,凬ξ,而得到,则称谓词P是解析谓词。特别地,当P未用函数量词扽ξ,凬ξ 时,则称之为算术谓词。 由于每一个一阶公式都有等价的前束范式,故可只限于讨论前束范式的情形并简称公式为谓词,把序列(α1,α2,…,αm,α1,α2,…,αn)记成α,并将一前束范式的前束词中,相同的一串量词收缩为一个如

分层理论

这样,一谓词是算术的即是可表成下列形式之一:,其中为一般递归谓词,同时,根据量词的个数及公式最外边的量词是扽 还是凬而分别记成型或型(型的对偶形式)。例如,形如 扽的谓词全体记作,而形如凬扽的谓词全体则记作。 分层理论

分层理论

分层理论

分层理论

分层理论

分层理论

分层理论

把可以用两种形式及来表示的谓词全体记作。 分层理论

分层理论

分层理论

例如,易见(此即把递归集定义作最简单的算术集)。 分层理论

又如,(此即一谓词属于的充要条件为它是一般递归的)。 分层理论

分层理论

在≥1的情形,恒存在一个枚举类(或)的全体谓词的枚举谓词。例如,对于和m==1而言,存在一个原始递归谓词(,,,,),使得当任给一个一般递归谓词(,,,)时,恒有自然数,使得 分层理论

分层理论

分层理论

此即枚举定理。在这个定理中,可将(,,,,)取为屶(,,,)则有分层定理。 分层理论

对每一≥0,都存在一个型(型)谓词,它不能在其对偶形式中得到表示。换言之,对每一正整数+1而言,有不是的型谓词,也有不是的型谓词。当然,有既不是也不是的型谓词。亦有既不是也不是的型谓词,且有不是的型和型谓词。 分层理论

分层理论

分层理论

分层理论

分层理论

分层理论

分层理论

分层理论

分层理论

分层理论

分层理论

分层理论

分层理论

分层理论

分层理论

分层理论

分层理论

分层理论

所以,这就得到了一个方便的分层(1)来给算术谓词(算术集)分类。这个分层称为算术分层。

刚刚查询:分层理论 远藤幸雄 协方差 LINDNER 一语双关 中短期 神圣牧师 甲苏 鲍勃·苏拉 鸡足山 依他凝血素α(活化) 邹婉如 吉本多香美 蓝铜矿 老弱妇孺 Teaching celesta MemecachedClient 自然博物馆 多项式 界外球 沈丹华 1990.1 来得及 ҰȲ˴ 肌肉练习器 纪检委 托盘脚墩 气象万千 Breakbeat Coelorhynchus 字面上 Alphabet Hyphomycetes ceratotrichia 宿迁猪头肉 Opaline 何迟 Consignee 为避免 新邦涌金门 莲子薏米粥 光荣革命 邯郸道省悟黄粱梦 音量控制 香煎梅花肉 algebraic 阎锡山 Shinsui 余干县 things 公民权利 马曼·桑斯 通古斯 甘露醇 UCP+600 厚度比 掼蛋歌 瓜条焖白鳝 一整天 纪瞻 刘海粟 杀生之权 立适康 海洋资源 endowment 反贪局 梁楷 水培蔬菜 热力学 一生中 十字型 火灾保险 军事学院 英格兰 零起步轻松学电工技术(第2版) 过滤嘴 天津工业大学电气工程与自动化学院 模拟计算 鸡西市水务局
友情链接: 知道 电影 百科 好搜 问答 微信 值得买 巨便宜 天天特价 洛阳汽车脚垫 女装 女鞋 母婴 内衣 零食 美妆 汽车 油价 郑州 北京 上海 广州 深圳 杭州 南京 苏州 武汉 天津 重庆 成都 大连 宁波 济南 西安 石家庄 沈阳 南阳 临沂 邯郸 保定 温州 东莞 洛阳 周口 青岛 徐州 赣州 菏泽 泉州 长春 唐山 商丘 南通 盐城 驻马店 佛山 衡阳 沧州 福州 昆明 无锡 南昌 黄冈 遵义
© 2025 haodianxin 百科 消耗时间:0.034秒 内存2.52MB