设一元二次方程 中,两根x1、x2有如下关系:
由一元二次方程求根公式知:
则有:
如果两数α和β满足如下关系:α+β= ,α·β= ,那么这两个数α和β是方程 的根。
通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。[5]
韦达定理不仅可以说明一元二次方程根与系数的关系,还可以推广说明一元n次方程根与系数的关系。
定理:
设复系数一元n次方程 的根为 ,则成立:
即:所有根之和为(n-1)次项系数与n次项系数之比的相反数,所有根之积为常数项与n次项系数之比再乘以(-1)n
注:该推广形式的证明一般无法根据求根公式进行,因为5次以上的一元方程没有求根公式。证明步骤较繁琐,是通过将左边的多项式因式分解成 之后,再去括号,比较相同次数的项的系数从而得出结论。这个方法具有普遍性,即使是有求根公式的方程,亦可以通过该方法证明韦达定理,而无需借助求根公式。[6]
公元前 2000 年左右,古巴比伦的数学家就能解简单的一元二次方程了,古埃及的纸草文书中也有所提及。公元前 480 年,中国数学家使用配方法求得了二次方程的正根,还在方程的研究中应用了内插法,可惜的是,并没有提出通用的求解方法。
公元 628 年,印度数学家婆罗摩笈多出版了《婆罗摩修正体系》,给出了一元二次方程 x2 + px + q = 0的一个求根公式。公元 820 年,阿拉伯数学家花拉子米出版了《代数学》。书中讨论到方程的解法,除了给出二次方程的几种特殊解法外,还第一次给出了一元二次方程的一般解法。他把方程的未知数叫做“根”,承认方程有两个根,并有无理根存在。同样可惜,他未认识到虚根这个概念。
16 世纪,意大利的数学家们为了解三次方程而开始应用复数根。与此同时,法国数学家韦达在研究二次方程时注意到,如果一次项的系数是两个数之和的相反数,而常数项是这两个数的乘积,则这两个数就是这个方程的根。虽然,由于时代的局限性,韦达当时没能从理论上证明,但他的数学思想和数学著作都大大充实了数学宝库。