数论的一个重要分支——代数数论把整数的一些理论推广到了一些特殊的代数整数集合。所谓代数整数就是首一(首项系数是1)整系数多项式的根。而高斯整数即是一类特殊的代数整数集合。

形如 (其中a,b是整数)的复数被称为高斯整数,高斯整数全体记作Z[i]。注意到若 γ=a+bi 是高斯整数,则它是满足如下方程的代数整数

由于γ 满足首一二次整系数多项式,所以它被称为二次无理数。反之,若 α=r+si,其中r,s是有理数,而且 α 是一个首一二次整系数多项式的跟,则 α 是高斯整数。高斯整数是以伟大的德国数学家高斯的名字命名的,他是第一位深入研究这类数性质的数学家。[2]

通常我们使用希腊字母来表示高斯整数,例如α,β,γ和δ。注意到若 n 是一个整数,则 n=n+0i 也是高斯整数。当我们讨论高斯整数的时候,把通常的整数称为有理整数。

加、减、乘运算

高斯整数在加、减、乘运算下是封闭的,正如下面定理所述。

定理1:设 α=x+iy 和 β=w+iz 是高斯整数,其中 x,y,w 和 z 是有理整数,则 α+β,α-β 和 αβ 都是高斯整数。

虽然高斯整数在加、减和乘运算下封闭,但是他们在除法运算下并不封闭,这一点与有理整数类似。此外,若 α=a+bi 是高斯整数,则 N(α)=a2+b2 是非负有理整数。[2]

整除性

我们可以像研究有理整数那样去研究高斯整数。整数的许多基本性质可以直接类推到高斯整数上。要讨论高斯整数的这些性质,我们需要介绍高斯整数类似于通常整数的一些概念。特别地,我们需要说明一个高斯整数整除另一个高斯整数的意义,并给出高斯素数的定义。

定义1:设 α 和 β 是高斯整数,我们称α整除β,是指存在一个高斯整数 γ 使得β=αγ。若α整除β,我们记作α|β ;若α 不整除β ,记作α β 。

高斯整数的整除也满足有理整数整除的一些相同的性质。例如,若α,β和γ 是高斯整数,α|β,β|γ,则α|γ。再者,若α,β,γ,ν和μ 是高斯整数,γ|μ,γ|β,则γ|(μα+νβ)。[2]

1, −1, i及−i都是高斯整数环里面的单位元。除此之外,在高斯整环里面不能因子分解的数称为高斯素数。高斯素数分为两类,其中一类是形式为4n+3(n是整数)的普通素数,如3,7等,它们在高斯整环里面也不能够因子分解。但是所有形式是4n+1的普通素数如5,13等,在高斯整环里面都可以唯一因子分解成两个共轭的高斯素数的乘积,如5=(2+i)(2-i)。需要注意的是,这里我们也可以写成5=(1+2i)(1-2i),这个是因为(2-i)i=1+2i,而i是单位元,所以我们可以认为这两种分解是等价的。此外,素数2也可以分解,即2=(1+i)(1-i)。[2]

刚刚查询:高斯整数 南丰县 有意思 类蛋白微球 泉州市舶司 丰大苑 蜜炙芝麻核桃 小有成就 武碎诸天 刀斧手 噬血地道 熊熊燃烧 鼎城区 不能生存 尖端出版社 过氧化物 蜉蝣总目 乔治·西格尔 张宝增 安兰慧 中生代 Dragonforce 龙升紫极 地下开采 青春这段路 生菜虾仁豆腐煲 求神问卜 百寿图 汾阳民间婚俗 thruster 紫诺商 引力波 有密切关系 叙事诗 关键性 Ϻִ... 火箭炮 史学界 端砚石 石川纱彩 莺歌陶瓷老街 CCTV-怀旧剧场 阿司匹林 出口处 卡佩王朝 宝利丰国际大厦 夜幕降临 蒲宫音 机械工业 终南捷径 戴若·顾比 Strategic 趣味填字游戏 香煎火腿芦笋卷 ȿյ 不拘小节 东京都 我与故宫五十年 张春桥 图书资料 aam 特工全球 宝光寺数罗汉 花童 羊毛衫乐队 庸君废后 蚬肉苦瓜羹 特别法 汉泽尔与格蕾苔尔 赤胆忠心 consumption 丽粉螨 地震科学数据 · 数据发布规范 Paradox 时代气息 陆夫子祠 复地万科活力城 防水层 溃疡病 中国幻想故事漫谈
友情链接: 知道 电影 百科 好搜 问答 微信 值得买 巨便宜 天天特价 洛阳汽车脚垫 女装 女鞋 母婴 内衣 零食 美妆 汽车 油价 郑州 北京 上海 广州 深圳 杭州 南京 苏州 武汉 天津 重庆 成都 大连 宁波 济南 西安 石家庄 沈阳 南阳 临沂 邯郸 保定 温州 东莞 洛阳 周口 青岛 徐州 赣州 菏泽 泉州 长春 唐山 商丘 南通 盐城 驻马店 佛山 衡阳 沧州 福州 昆明 无锡 南昌 黄冈 遵义
© 2025 haodianxin 百科 消耗时间:0.031秒 内存2.49MB