离散化是程序设计中一个常用的技巧,它可以有效的降低时间复杂度。其基本思想就是在众多可能的情况中,只考虑需要用的值。离散化可以改进一个低效的算法,甚至实现根本不可能实现的算法。要掌握这个思想,必须从大量的题目中理解此方法的特点。例如,在建造线段树空间不够的情况下,可以考虑离散化。
有些数据本身很大, 自身无法作为数组的下标保存对应的属性。如果这时只是需要这堆数据的相对属性, 那么可以对其进行离散化处理。当数据只与它们之间的相对大小有关,而与具体是多少无关时,可以进行离散化。
例如:
91054与52143的逆序对个数相同。
设有4个数:
1234567、123456789、12345678、123456
排序:123456<1234567<12345678<123456789
=>1<2<3<4
那么这4个数可以表示成:2、4、3、1
思路是:先排序,再删除重复元素,最后就是索引元素离散化后对应的值。
假定待离散化的序列为a[n],b[n]是序列a[n]的一个副本,则对应以上三步为:
sort(sub_a,sub_a+n);
int size=unique(sub_a,sub_a+n)-sub_a;//size为离散化后元素个数
for(i=0;i a[i]=lower_bound(sub_a,sub_a+size,a[i])-sub_a + 1;//k为b[i]经离散化后对应的值 对于第3步,若离散化后序列为0,1,2,...,size - 1则用lower_bound,从1,2,3,...,size则用upper_bound。其中lower_bound返回第1个不小于b[i]的值的指针,而upper_bound返回第1个大于b[i]的值的指针,当然在这个题中也可以用lower_bound然后再加1得到与upper_bound相同结果,两者都是针对以排好序列。使用STL离散化大大减少了代码量且结构相当清晰。[1] 如果说OIBH问得最多的问题是二分图,那么问得最多的算是离散化了。对于什么是离散化,有各种说法,比如“排序后处理”、“对坐标的近似处理”等。[2] 离散化是程序设计中一个常用的技巧,它可以有效的降低时间和空间复杂度。下面是用来说明如何运用离散化改进一个低效的的算法的三个例子。