数论的一个重要分支——代数数论把整数的一些理论推广到了一些特殊的代数整数集合。所谓代数整数就是首一(首项系数是1)整系数多项式的根。而高斯整数即是一类特殊的代数整数集合。

形如 (其中a,b是整数)的复数被称为高斯整数,高斯整数全体记作Z[i]。注意到若 γ=a+bi 是高斯整数,则它是满足如下方程的代数整数

由于γ 满足首一二次整系数多项式,所以它被称为二次无理数。反之,若 α=r+si,其中r,s是有理数,而且 α 是一个首一二次整系数多项式的跟,则 α 是高斯整数。高斯整数是以伟大的德国数学家高斯的名字命名的,他是第一位深入研究这类数性质的数学家。[2]

通常我们使用希腊字母来表示高斯整数,例如α,β,γ和δ。注意到若 n 是一个整数,则 n=n+0i 也是高斯整数。当我们讨论高斯整数的时候,把通常的整数称为有理整数。

加、减、乘运算

高斯整数在加、减、乘运算下是封闭的,正如下面定理所述。

定理1:设 α=x+iy 和 β=w+iz 是高斯整数,其中 x,y,w 和 z 是有理整数,则 α+β,α-β 和 αβ 都是高斯整数。

虽然高斯整数在加、减和乘运算下封闭,但是他们在除法运算下并不封闭,这一点与有理整数类似。此外,若 α=a+bi 是高斯整数,则 N(α)=a2+b2 是非负有理整数。[2]

整除性

我们可以像研究有理整数那样去研究高斯整数。整数的许多基本性质可以直接类推到高斯整数上。要讨论高斯整数的这些性质,我们需要介绍高斯整数类似于通常整数的一些概念。特别地,我们需要说明一个高斯整数整除另一个高斯整数的意义,并给出高斯素数的定义。

定义1:设 α 和 β 是高斯整数,我们称α整除β,是指存在一个高斯整数 γ 使得β=αγ。若α整除β,我们记作α|β ;若α 不整除β ,记作α β 。

高斯整数的整除也满足有理整数整除的一些相同的性质。例如,若α,β和γ 是高斯整数,α|β,β|γ,则α|γ。再者,若α,β,γ,ν和μ 是高斯整数,γ|μ,γ|β,则γ|(μα+νβ)。[2]

1, −1, i及−i都是高斯整数环里面的单位元。除此之外,在高斯整环里面不能因子分解的数称为高斯素数。高斯素数分为两类,其中一类是形式为4n+3(n是整数)的普通素数,如3,7等,它们在高斯整环里面也不能够因子分解。但是所有形式是4n+1的普通素数如5,13等,在高斯整环里面都可以唯一因子分解成两个共轭的高斯素数的乘积,如5=(2+i)(2-i)。需要注意的是,这里我们也可以写成5=(1+2i)(1-2i),这个是因为(2-i)i=1+2i,而i是单位元,所以我们可以认为这两种分解是等价的。此外,素数2也可以分解,即2=(1+i)(1-i)。[2]

相关查询: 多项式
最新查询:五千多 武夷茶 复北小区 服务质量 显然有 б��ʯ 四大金刚 荆沙市 陶冶性情 国家化 豆腐皮 tramcar 一毛不拔 护卫艇 爱国运动 来料加工装配贸易 竹枝词 应当是 周方杨 独角兽 三省坡 公文包 阿默士 周竞天 舰队司令 治疗仪 中国名寺风水 分界面 奢安之乱 高能量 太阳日 租售宝 金子美穗 horrible 打卡机 克罗地亚共和国刑法典 翠娘 捉襟见肘 中共龙泉驿区委党校 俯视图 儿茶酚 Gavin Rossdale 煎柴虫 隆背拟海鲂 relations 华欣 两唇形 大家族 武昌鱼 praetores 株式会社 误以为 心目中 超流体 重复说 你争我夺 霍丽娜 阴道炎 磷脂酰肌醇途径 子结构 黄炎培 Immunityofwitness 改邪归正 squamata 逐渐形成 王道散仙 翻山越岭 卫星电视 只言片语 冠姚梅 水点心 一国两制 �Ծ��� 三机部 Isostasy 翼尖小翼 表现出来 使用范围 高斯整数
友情链接: 知道 电影 百科 好搜 问答 微信 值得买 巨便宜 天天特价 洛阳汽车脚垫 女装 女鞋 母婴 内衣 零食 美妆 汽车 油价 郑州 北京 上海 广州 深圳 杭州 南京 苏州 武汉 天津 重庆 成都 大连 宁波 济南 西安 石家庄 沈阳 南阳 临沂 邯郸 保定 温州 东莞 洛阳 周口 青岛 徐州 赣州 菏泽 泉州 长春 唐山 商丘 南通 盐城 驻马店 佛山 衡阳 沧州 福州 昆明 无锡 南昌 黄冈 遵义
© 2025 haodianxin 百科 豫ICP备14030218号-3 消耗时间:0.028秒 内存2.82MB