趋势变化识别
对于一个已知分布的随机过程,图一. 显示了一系列样本函数的基本趋势,斜率为1.0,同时一个斜率为1.3的变化(突变)移动,从时间10的地方开始出现。为了识别出样本函数随机变量的趋势变化,将Cuscore统计量定义为
图一. 样本函数
Q=Σ[y(t)-βt]t ;其中y(t)是一系列的观测值,β是斜率(也就是观察的时间序列值在每个时间单位的变化率),t为时间指数。Cuscore值形成的图形如图二所示。
图二. Cuscore统计量
这种统计识别方法揭露和展示了斜率上的变化所呈现出来的证据。当斜率从初始值1.0增加30%变为1.3,其变化的幅度应该很明显的。30%已经很接近1/3的程度,是一个很大的变化,应该引起我们的注意,但我们很难在图一中t=10的地方识别出变化趋势。
带噪声数据趋势识别
当观测值并没有落在指定的数学曲线上时,如图三加入了随机的噪声,并依然按照30%的变化率转变,Cuscore统计量比无噪声数据显现了更强的趋势增强信号。
图三. 随机噪声加入
在图四中,ABC这条线是一个趋势变化的原型。第一个线段AB的斜率为0.5,而第二个线段BC的斜率为1.5。虚线BD是直线AB的延长线。虚线AE与直线BC平行,斜率也是1.5。当斜率发生变化,观测值就会偏离基础模型(也就是没有斜率变化)的期望值。顺着直线BC,y的值超过了直线BD的期望值,随着时间地不断增加。在图五中,我们根据Q值的累计偏差,就可以得到如曲线1所示的图形。
图四. 趋势变化图
现在我们假设事先不知道直线AB与BC的斜率,也不知道在B点的斜率发生了变化。假设我们最好的理解是,从A点开始应该出现一个1.0的斜率,如直线AC所示。在图五中,Cuscore统计量显示为曲线2的图形。Cuscore统计量的图形差异极大。根据这个假设的基础模型,得到的偏差序列,可以明显看出趋势的斜率发生了变化。[1]
图五. β=0与β=1的Cuscore统计量
数据监控
对自相关数据的监控,可先对数据拟合一个合适的时间序列模型,然后运用此模型来消除自相关性,对残差进行统计过程控制 监控。 但是这些控制图都忽略了故障表征的动态特性。因此,我们使用Cuscore统计量来进行预期信号的识别。
首先,构建如下模型
ai = ai( yi,xi,γ) i = 1,2,…,l (1)
其中yi是观测值,xi是已知的输入变量,γ 是失控信号的某个未知参数,ai ~ N( 0,σ2a) ,则对数
似然函数为