趋势变化识别

对于一个已知分布的随机过程,图一. 显示了一系列样本函数的基本趋势,斜率为1.0,同时一个斜率为1.3的变化(突变)移动,从时间10的地方开始出现。为了识别出样本函数随机变量的趋势变化,将Cuscore统计量定义为

图一. 样本函数

Q=Σ[y(t)-βt]t ;其中y(t)是一系列的观测值,β是斜率(也就是观察的时间序列值在每个时间单位的变化率),t为时间指数。Cuscore值形成的图形如图二所示。

图二. Cuscore统计量

这种统计识别方法揭露和展示了斜率上的变化所呈现出来的证据。当斜率从初始值1.0增加30%变为1.3,其变化的幅度应该很明显的。30%已经很接近1/3的程度,是一个很大的变化,应该引起我们的注意,但我们很难在图一中t=10的地方识别出变化趋势。

带噪声数据趋势识别

当观测值并没有落在指定的数学曲线上时,如图三加入了随机的噪声,并依然按照30%的变化率转变,Cuscore统计量比无噪声数据显现了更强的趋势增强信号。

图三. 随机噪声加入

在图四中,ABC这条线是一个趋势变化的原型。第一个线段AB的斜率为0.5,而第二个线段BC的斜率为1.5。虚线BD是直线AB的延长线。虚线AE与直线BC平行,斜率也是1.5。当斜率发生变化,观测值就会偏离基础模型(也就是没有斜率变化)的期望值。顺着直线BC,y的值超过了直线BD的期望值,随着时间地不断增加。在图五中,我们根据Q值的累计偏差,就可以得到如曲线1所示的图形。

图四. 趋势变化图

现在我们假设事先不知道直线AB与BC的斜率,也不知道在B点的斜率发生了变化。假设我们最好的理解是,从A点开始应该出现一个1.0的斜率,如直线AC所示。在图五中,Cuscore统计量显示为曲线2的图形。Cuscore统计量的图形差异极大。根据这个假设的基础模型,得到的偏差序列,可以明显看出趋势的斜率发生了变化。[1]

图五. β=0与β=1的Cuscore统计量

数据监控

对自相关数据的监控,可先对数据拟合一个合适的时间序列模型,然后运用此模型来消除自相关性,对残差进行统计过程控制 监控。 但是这些控制图都忽略了故障表征的动态特性。因此,我们使用Cuscore统计量来进行预期信号的识别。

刚刚查询:cuscore impossible Monitoring sendmail Reading 水墨花鸟画 Project+Beacon Belyaev Masters 日常性 polysaccharide 加拿大英语文学史 Jamaicans 附属国 J.Steward 归功于 海上封锁 尹子菁 乌蒙山 陶瓷厂 天然资源 赛艇运动 休止符 老三届 超辣干咖喱螃蟹 一等兵 韩国人 石川铃华 小池 天翻地覆 Accelerator 北极熊 有颌类 光天化日 homeless 亟待解决 三七毛 Piccadilly ground-piston scoundrel Aluminium ç›¸å…³è€ 灭顶之灾 易达武 恐惧症 某个人 不会错 添砖加瓦 可以信赖 中国十大名茶 哈尔博格学院 思想感情 抓住明日之光 白静宜 玛丽恩 Slowdive 机械性 吉凶祸福 明基JoybookR55(160) 杂交稻 研究者 腊托自然村 那务镇 龙源乡 放线菌素D 刘易斯 扩张主义 Explication 职业中学 黑色的光明:非洲文化的面貌与精神 KAT-TUN 重离子 阿德里安·布鲁威尔 芝麻酱糖酥饼 曾经有 公司法 秋月级驱逐舰 忘不了 连续退火 magnificent
友情链接: 知道 电影 百科 好搜 问答 微信 值得买 巨便宜 天天特价 洛阳汽车脚垫 女装 女鞋 母婴 内衣 零食 美妆 汽车 油价 郑州 北京 上海 广州 深圳 杭州 南京 苏州 武汉 天津 重庆 成都 大连 宁波 济南 西安 石家庄 沈阳 南阳 临沂 邯郸 保定 温州 东莞 洛阳 周口 青岛 徐州 赣州 菏泽 泉州 长春 唐山 商丘 南通 盐城 驻马店 佛山 衡阳 沧州 福州 昆明 无锡 南昌 黄冈 遵义
© 2026 haodianxin 百科 消耗时间:0.006秒 内存0.8MB