现代的二进制记数系统由戈特弗里德·莱布尼茨于1679年设计,在他1703年发表的文章《论只使用符号0和1的二进制算术,兼论其用途及它赋予伏羲所使用的古老图形的意义》(法语:Explication de l'arithmétique binaire, qui se sert des seuls caractères 0 et 1 avec des remarques sur son utilité et sur ce qu'elle donne le sens des anciennes figures chinoises de Fohy)出现。与二进制数相关的系统在一些更早的文化中也有出现,包括古埃及、古代中国和古印度。中国的《易经》尤其引起了莱布尼茨的联想。 二进制码
埃及
古埃及的计数员使用两种不同的系统表示分数,一是埃及分数(与二进制记数系统无关),二是荷鲁斯之眼分数(叫这个名字是因为很多数学史家相信这个系统所采用的符号可以排列成荷鲁斯之眼,但这一点有争议)。荷鲁斯之眼分数是用来表示分数数量的谷物、液体等的二进制记数系统,在这一系统下,以赫卡特为单位的分数值表示成1/2、1/4、1/8、1/16、1/32和1/64等二进制分数的和。 这一系统的早期形式可以在埃及第五王朝(约公元前2400年)的档案中找到,而发展完备的象形文字形式可追溯到埃及第十九王朝(约公元前1200年)。 古埃及做乘法的方式也与二进制数密切相关,约公元前1650年的莱因德数学纸草书中就能看到。这一计算方法中,要把1和乘数不断翻倍,按被乘数的二进制表示从左列选出相应的2的幂次,并将右列的数相加[1] 。
中国
《易经》的历史可以追溯到公元前9世纪,其中的二进制记号是用来解释其四进制占卜技术的。 它基于道的阴阳二重性。八卦和一种64卦早在古代中国的周朝就被使用了,而它们分别与三位与六位二进制数字类似。 北宋学者邵雍用一种与现代二进制数字类似的形式重新排列了卦象,不过并不是为了数学应用。在邵雍方阵中,把实线看作1、断线看作0,从右下到左上浏览,那么卦象实际上就是0到63的二进制[2] 。 邵雍方阵
印度
印度学者平甲拉(公元前两世纪左右) 通过二进制方法来研究韵律诗。他的二进制中用到的是长短音节(一个长音节相当于两个短音节),有些像摩尔斯电码。与西方的位置表示法不同,平甲拉的系统中,二进制是从右往左书写的。
莱布尼茨前的西方先驱
1605年,弗朗西斯·培根提出了一套系统,可以把26个字母化为二进制数。此外他补充道,这个思路可以用于任何事物:“只要这些事物的差异是简单对立的,比如铃铛和喇叭,灯光和手电筒,以及火枪和类似武器的射击声”。这对二进制编码的一般理论有重要意义。(参见培根密码)