半导体器件特性之一,把电源的电压的正极与P区引出端相连,负极与N极引出端相连时,称PN结正向偏置,简称PN结正偏。[2]
PN结正偏时,外部电场的方向是从P区指向N区,显然与内电场的方向相反,这时外电场驱使P区的空穴进入空间电荷区抵消一部分负空间电荷,同时N区的自由电子进入空间电荷区抵消一部分正空间电荷,结果使空间电荷区变窄,内电场被削弱。内电场的削弱使多数载流子的扩散运动得以增强,形成较大的扩散电流(扩散电流由多子的定向移动形成,通常简称为电流)。在一定范围内,外电场愈强,正向电流愈大,PN结对正向电流呈低电阻状态,这种情况在电子技术中称为PN结的正向导通。半导体在无外加电压的情况下,扩散运动和漂移运动处于动态平衡,动态平衡状态下通过PN结的电流为零。这时,如果在PN结两端加上电压,扩散与漂移运动的平衡就会被破坏,PN结将显示出其单向导电的性能。[3] 正向偏置
PN结的正向导电性,是构成半导体器件的主要工作机理。[3]
常用小型发光二极管的主要特性:
①发光二极管是一个单向导电器件。只允许电流从正极流向负极.只有正向接入时才导通并发光.反向接入则截止不通.当然也不发光。这一点与普通二极管相似。但发光二极管的管压降比普通二极管大,约为2V左右,电源电压必须大于管压降,发光二极管才能工作[1] 。
②发光二极管的亮度与其工作电流If有关,一般当If=1mA时起辉.随着lf的增加亮度不断增大.但当lf≥5mA后.亮度增加不显著。另外,发光二极管的最大工作电流一般为20~30mA,超过此值将损坏发光二极管。因此,工作电流lF应在5~20mA范围内选择,为节省电能,一般选择lf=5mA[1] 。
③发光二极管的反向击穿电压一般在5V左右.使用中不应使发光二极管承受超过5V的反向电压中,相对发光二极管VD而言.电源GB就是一个反向电压).否则发光二极管将被击穿损坏[1] 。
发光二极管正、负极判断与检测:
①肉眼观察法。发光二极管是一个有正、负极之分的器件,使用前应先分清它的正、负极。由于发光二极管的管体一般都是用透明塑料制成,可以用肉眼观察来识别它的正、负极:将发光二极管拿起在明亮处,从侧面观察两条引出线在管体内的形状.较小的是正极,较大的是负极。也可以用万用表或简易电路在检测发光二极管好坏的同时,判断出它的正、负极[1] 。
②万用表检测法。用万用表检测发光二极管时,必须使用“R×l0k”档。因为前面我们已经讲过。发光二极管的管压降为2V.而万用表处于“R×lk”及其以下各电阻挡时.表内电池仅为1.5V。低于管压降.无论正、反向接入,发光二极管都不可能导通,也就无法检测。R×1k”档时表内接有9V(或15V)高压电池,高于管压降,所以可以用来检测发光二极管。检测时.将两表笔分别与发光二极管的两条引线相接,如表针偏转过半,同时发光二极管中有一发亮光点,表示发光二极管是正向接入,这时与黑表笔(与表内电池正极相连)相接的是正极;与红表笔(与表内电池负极相连)相接的是负极。再将两表笔对调后与发光二极管相接,这时为反向接入,表针应不动。如果不论正向接入还是反向接入,表针都偏转到头或都不动,则该发光二极管已损坏[1] 。