把一条线段分割为两部分,使较大部分与全长的比值等于较小部分与较大的比值,则这个比值即为黄金数。其比值是(√5 - 1 )/2,近似值为0.618,通常用希腊字母Ф表示这个值。[1]
附:黄金分割数前面的32位为:0.6180339887 4989484820 458683436564
设一条线段AB的长度为a,C点在靠近B点的黄金分割点上,且AC为b,则b与a的比叫作黄金比[3] 。
1、设已知线段为AB,过点B作BC⊥AB,且BC=AB/2 线段的黄金分割尺规作图
2、连结AC
3、以C为圆心,CB为半径作弧,交AC于D
4、以A为圆心,AD为半径作弧,交AB于E,则点E即为黄金分割点[4]
在一个黄金矩形中,以一个顶点为圆心,矩形的较短边为半径作一个四分之一圆,交较长边于一点。过这个点,作一条直线垂直于较长边。这时,生成的新矩形仍然是一个黄金矩形,这个操作可以无限重复,产生无数个的黄金矩形。[4] 黄金矩形的黄金分割尺规作图
设 为黄金比,便有 。然后有 , ,得 。对等式右边分母中的 又以 代替,可得 ;以此类推,可得无穷连分数。对等式进行类似的代替,可得无穷连根号。[5]
设一个数列,它的最前面两个数是1、1,后面的每个数都是它前面的两个数之和。例如:1,1,2,3,5,8,13,21,34,55,89,144……这个数列为“斐波那契数列”,这些数被称为“斐波那契数”。
经计算发现相邻两个斐波那契数的比值是随序号的增加而逐渐逼近黄金分割比。由于斐波那契数都是整数,两个整数相除之商是有理数,而黄金分割比是无理数,所以只是不断逼近黄金分割比。[6]
所谓黄金三角形是一个等腰三角形,其底与腰的长度比为黄金比值,正是因为其腰与边的比为(√5-1)/2而被称为黄金三角形。
将一个正五边形的所有对角线连接起来,在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的,所产生的五角星里面的所有三角形都是黄金分割三角形。[7] 正五边形
公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,关于黄金分割比例的起源大多认为来自毕达哥拉斯学派。1:0.618就是黄金分割。这是一个伟大的发现。 毕达哥拉斯
公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。他认为所谓黄金分割指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波那契数列1,1,2,3,5,8,13,21,…第二位起相邻两数之比,即2/3,3/5,5/8,8/13,13/21,…的近似值。[1]