导数和积分的发现是微积分发明的关键一步。十七世纪以来,光学透镜的设计以及炮弹弹道轨迹的计算促使欧洲的数学家对曲线的切线进行研究。1630年代,法国数学家吉尔·德·罗伯瓦尔作出了最初的尝试。与此同时,同是法国人的费马在计算切线时已经使用了无穷小量的概念。
英国的巴罗、荷兰的于德(Johnann Van Waveren Hudde)和瓦隆的斯卢兹(René Francoiss Walther de Sluze)继续了费马的工作。然而,费马和巴罗等人并没有将求导归纳为一种独立的工具,只是给出了具体的计算技巧。
十七世纪六十年代,英国人伊萨克·牛顿提出了“流数”的概念。牛顿在写于1671年的《流数法与无穷级数》中对流数的解释是:“我把时间看作是连续的流动或增长,而其他的量则随着时间而连续增长。我从时间流动性出发,把所有其他量的增长速度称为流数。”也就是说,流数就是导数。牛顿将无穷小的时间间隔定义为“瞬间”(moment),而一个量的增量则是流数与瞬间的乘积。求导数时,牛顿将自变量和因变量两边展开,同时除以瞬间,再将剩下的项中含有瞬间的项忽略掉。而在他的第三篇微积分论文中,牛顿使用了新的概念:最初比和最后比。他说:随我们的意愿,流数可以任意地接近于在尽可能小的等间隔时段中产生的增量,精确地说,它们是最初增量的最初的比,它们也能用和它们成比例的任何线段来表示。
相比于牛顿,德国数学家莱布尼兹使用了更清晰的记号来描述导数。他利用了巴罗的“微分三角形”概念,将自变量和因变量的增量记为dx和 dy。他把dx理解为“比任何给定的长度都要小”,而dy则是 x 移动时y“瞬刻的增长”。而导数则是两者之间的比例。他还研究了函数之和、差、积、商的求导法则。
微积分的理论面世后,遭到了有关无穷小量定义的攻击与质疑。导数的定义自然也包括在内。莱布尼兹和牛顿对无穷小量的认识都是模糊的。不仅如此,莱布尼兹甚至引入(d)x 和 (d)y,称其为“未消失的量”,用以进行求导前部的计算。在完成计算后再用“消失的量”dx 和dy来代替它们,并假定前两者之比等于后两者之比,认为这是一个不容置疑的真理。
许多数学家,包括伯努利兄弟、泰勒、麦克劳林、达朗贝尔、拉格朗日和欧拉都想要对微积分的严密性辩护或将微积分严密化。但受限于对无穷小量的认识,十八世纪的数学家并没有做出太大的成果。微积分的强烈抨击者,英国的乔治·贝克莱主教在攻击无穷小量时认为,流数实际上是“消失的量的鬼魂”,是0与0之比。欧拉承认后者,并认为0与0之比可以是有限值。拉格朗日则假定函数都可以展开为幂级数,并在此基础上定义导数。