恒星
星表就是记载天体各种参数(如位置、运动、星等、光谱型等)的表册。通过天文观测编制星表,是天文学中很早就开始的工作之一。公元前四世纪,中国战国时魏国天文学家石申著有《天文》八卷,后世称为《石氏星经》,其中载有121颗恒星的位置。这是世界上最古老的星表,今已失传。公元前二世纪,喜帕恰斯编制了一本载有1,022颗恒星位置的星表,由托勒密抄传下来,这是古代著名的星表。
随着中天观测原理的提出和新式望远镜的采用,星表精度日益提高。特别是布拉得雷测定的恒星位置,有较高的精度。他的星表对以后编制基本星表的工作有重要的贡献。贝塞耳将布拉得雷星表的恒星数扩充到50,000颗,于1818年出版新的星表;后来又编成有63,000颗星的星表。1859~1862年,阿格兰德尔出版波恩星表,简称BD星表,他的助手和继承人申费尔德于1886年出版了它的续表SD星表。BD星表及其续表刊载了在赤纬+90°~-23°天区内亮于 9等的457,847颗星。
直到20世纪50年代,国际上对精度不高的部分恒星坐标和自行不断进行观测和改正,陆续出版了第三基本星表(FK3)和补充星表、N30星表、第四基本星表(FK4)和补充星表。
1984年公布了现代先进的第五基本星表(FK5),该星表与前述星表有较大不同,它是在启用IAU1976天文常数系统、IAU1980章动序列的情况下重新编制的星表,因此自1984年起恒星参考系是由FK5基本星表来实现,它定义一个以太阳系质心为中心,J2000.0平赤道和平春分点为基准的天球平赤道坐标系。近年来国际上又编制了第六基本星表(FK6),该星表尽管没有被选入天文参考架,但其自行精度最高。
从BC150年至20世纪90年代天文参考架都在光学波段,1991年IAU决定使用河外射电源精确坐标来定义天球参考框架。
欧洲空间局(ESA)在1989年8月8日成功地发射了依巴谷天体测量卫星,依巴谷星表和第谷星表是依巴谷卫星的主要观测结果,依巴谷星表测定了约12万颗恒星,构成了均匀的天球参考系,极限星等达到13mag,其位置、自行与视差的精度分别为±0.002″、±0.002″/yr、±0.002″。1997年在日本京都召开的IAU第23届大会给出了由212颗河外致密射电源构成的国际天球参考系(ICRS),决定由依巴谷星表取代已沿用10多年的FK5星表,成为ICRS在光学波段的实现,并将改进后的依巴谷框架称为依巴谷天球参考框架(HCRF)。
恒星星表的历史由来已久。自史前以来,世界各地的文明,都给夜空中最明亮和最突出的星星起了自己独特的名字。在希腊,拉丁和阿拉伯文化中,有些名字几乎没有变化,有些至今仍在使用。几个世纪以来,随着天文学的发展和进步,出现了一种通用的编目系统的需求,即最亮的恒星(因此也是研究最多的恒星)由同一个标签知道,不管天文学家来自哪个国家或文化。为了解决这个问题,在文艺复兴时期,天文学家试图用一套规则来编制恒星的编目。今天仍然流行的最早的例子是约翰·拜耳在他1603年的Uranometria atlas中介绍的。拜耳用小写希腊字母标记每个星座中的恒星,按照它们(视)亮度的大致顺序,这样一来,一个星座中最亮的恒星通常(但并不总是)被标记为α,第二亮的恒星被标记为β,以此类推。例如,天鹅座中最亮的恒星是天鹅座α(注意使用拉丁星座名称的领属词) ,它也叫Deneb(天津四),狮子座中最亮的恒星是狮子座α也叫做Regulus(轩辕十四)。不幸的是,这个方案遇到了麻烦。错误的估计和其他不规则的情况意味着它并不总是准确的:例如,双子座中最亮的恒星是双子座β星(北河三),而双子座α星(北河二)只是星座中第二亮的恒星。而且,希腊字母表只有24个字母,许多星座包含更多的星星,即使命名系统仅限于肉眼可见的星星。拜耳试图通过引入现代拉丁字母(a 到 z)中的小写字母(a 到 z)来解决这个问题,然后在每个星座中,大写字母(A 到 Q)分别代表25到50和51到76。拜耳的希腊字母系统引入近200年后,另一个流行的方案出现了,被称为佛兰斯蒂德命名法(flamsteed numbers) ,以第一个英语皇家天文学家约翰·佛兰斯蒂德(john flamsteed)命名。在格林威治进行观测,佛兰斯蒂德借助望远镜,编制了第一份大型星表,在他死后1725年出版。我们现在所知的佛兰斯蒂德编号,并不是由佛兰斯蒂德本人分配的,而是由一位法国天文学家,杰罗姆·拉兰德,在1783年出版的法国版佛兰斯蒂德目录中。在这个方案中,每个星座内的恒星按照它们的赤经顺序编号(例如:天鹅座61)。其他亮星的指定方案也已经出台,但是还没有达到同样的普及程度。其中一个这样的计划,建立在佛兰斯蒂德编号的基础上,是由美国天文学家本杰明·古尔德在1879年提出的。今天只有少数恒星偶尔会参考古德命名法ーー例如,船尾座 38G。[1]