活化能是一个化学名词,又被称为阈能。这一名词是由阿伦尼乌斯(Arrhenius)在1889年引入,用来定义一个化学反应的发生所需要克服的能量障碍。活化能可以用于表示一个化学反应发生所需要的最小能量。反应的活化能通常表示为Ea,单位是千焦耳每摩尔(kJ/mol)。
活化能表示势垒(有时称为能垒)的高度。活化能的大小可以反映化学反应发生的难易程度。
在Arrhenius提出活化能概念之前,人们对溶液反应曾总结出这样一个规则:溶液温度每升高10℃,反应速率将成倍增加。并且,在1878年,由英国科学家Hood最早通过实验归纳出一经验关系式:
式中B、C是经验常数。
随后,范特霍夫于1884年在讨论温度对化学反应平衡常数影响的基础上,首先对上式作出了初步的理论说明。他从热力学严格地导出了描述温度与化学平衡常数K之间关系的方程式,对于溶液反应Kc可写成:
并导出了温度与反应速率常数之间的关系式:
不过他没有给出A的物理意义以及确定的I方法,因此当时没能引起人们的重视
1889年,Arrhenius 通过大量实验与理论的论证,揭示了反应速率与温度的关系Arrhenius经验公式,其形式如下[1] :
指数式
对数式
微分式
阿伦尼乌斯提出了活化能的概念,但对活化能的解释不够明确,特别是把活化能看作是与温度无关的常数,这与许多实验事实不符。 20世纪20年代,科学家托尔曼(Tolman)运用统计热力学来讨论化学反应速率与温度的关系,并于1925年推导出下面的反应式:
式中: 为活化分子的平均摩尔能量, 为反应物分子的平均摩尔能量,即活化能是活化分子的平均能量与反应物分子的平均能量之差。
很多反应若按阿仑尼乌斯的经验公式,以lnk对1/T作图,常得到的图形是一根曲线,而不是直线,这表明活化能并不是一个常数。事实上,
活化能是指化学反应中,由反应物分子到达活化分子所需的最小能量。以酶和底物为例,二者自由状态下的势能与二者相结合形成的活化分子的势能之差就是反应所需的活化能,因此不是说活化能存在于细胞中,而是细胞中的某些能量为反应提供了所需的活化能。