卡尔·皮尔逊(KarlPearson) 是现代相关分析的奠基者,他在1896年发表的论文中正式定义了相关系数[3] ,并在研究中广泛使用协方差。它给出了相关系数公式的标准化形式:

其中, 是协方差, 和 分别是 和 的标准差。这篇论文[3] 标志着现代相关系数和协方差的形式化定义的诞生。

在此之前,19世纪的统计学家,比如弗朗西斯·高尔顿(Francis Galton),也曾在研究遗传学和变量相关性时间接使用过协方差的思想。高尔顿的研究开启了对变量间关系的定量分析,而皮尔逊进一步发展了这些思想。

如今,随着矩阵运算和线性代数的普及,协方差矩阵被广泛用于多元统计分析、机器学习和数据科学等领域,并在经济学、遗传学等领域有着重要作用。

设 和 为两个实值随机变量,它们的协方差定义为它们偏离各自期望值的乘积的期望值(或均值)[1] :

其中, 是 的期望值,cov是协方差的英文covariance的缩写。协方差有时也记为 或 ,与方差的表示类似。

的方差为

可以看出协方差的形式类似于方差,只是把其中的一个 换成了 ;协方差又有 二者的协同参与,由此得出“协方差”的名称[1] 。

通过利用期望的线性性质,协方差的计算公式可以简化为乘积的期望减去各自期望值的乘积:

如果随机变量对 是离散实值随机变量,且可以取值 ,其中 ,且每种取值的概率相等(即 ),则协方差可以用随机变量的均值 和 表示为:

也可以不直接涉及均值表示为[2] :

更一般地,若 有 个可能的离散取值 ,且各取值的概率为 ,则协方差为:

当离散随机变量 和 的联合概率分布 时,协方差的计算使用双重求和:

协方差被用来描述两个随机变量之间线性相关程度[4] 。

假设两个随机变量 存在线性关系: 。为使这种关系最接近于实际的 的分布,需要使误差的平方和(均方误差 )达到最小。经过计算求出使S达到最小的a, b值,代入化简得

分别为 的方差。要使S最小,必须使:

相关查询: 皮尔逊 KarlPearson 奠基者
最新查询:面包业 援礼入法 菏泽市 与野兽同行 8.11宁夏同心山洪 希特勒:恶魔的复活 武装部 香香的 Frameset 东埄 腐衣烩番茄 米洛甲 ������-������� 嘉定县 HQD 前不见古人 ɽ 滑滑粉 三角帆 两用人才 万海峰将军旧居 Phenomena 水成岩 Intended 基于体素形态学分析 Mystery 三年生 传入神经 矮人王圣战 小型斗牛梗 不稳定性 内啡肽 新宿小偷日记 赵爱玲 The+Searching+Eye 安庆黄梅戏剧院一团 创办者 Springer 许宗彦 室女座超星系团 圣莱热教堂 朱炎煊 Jindal. 正黄旗 Schilling R.imschooliana Movement 点亮人生智慧 不要命 2012张惠妹amazing巡回演唱会 中心语 phosphodiesterases 家具设计分析与应用 ʳǰײ thermochemistry 文学史 还未完成的拼图 热力过程 埃塞尔 丹江口市 西康省 凯马蒂奥 志同道合 三鲜冬瓜粥 荷香糯米骨 异手海参 羽毛球馆 雷公根 优莱卡 煤渣胡同 多种经营 红头石楠 素炒萝卜丁 选举委员 支持下 车敦发 蒋晓娟 点击数 平阴县人民政府办公室 协方差
友情链接: 知道 电影 百科 好搜 问答 微信 值得买 巨便宜 天天特价 洛阳汽车脚垫 女装 女鞋 母婴 内衣 零食 美妆 汽车 油价 郑州 北京 上海 广州 深圳 杭州 南京 苏州 武汉 天津 重庆 成都 大连 宁波 济南 西安 石家庄 沈阳 南阳 临沂 邯郸 保定 温州 东莞 洛阳 周口 青岛 徐州 赣州 菏泽 泉州 长春 唐山 商丘 南通 盐城 驻马店 佛山 衡阳 沧州 福州 昆明 无锡 南昌 黄冈 遵义
© 2025 haodianxin 百科 豫ICP备14030218号-3 消耗时间:0.029秒 内存2.83MB