集合论是研究集合的结构、运算及性质的一个数学分支。现代数学这一最重要的基础理论是康托在19世纪70、80年代创立的。由平面(或空间)上一些点组成的集,称为“点集”。一个点集可以是某些孤立的点,也可以是某曲线上或某区域内的所有点。可以把各种几何图形看成是一个点集,然后研究它所包含的点在位置及数量关系方面的共同特征,这样往往能够得到比直观更为深刻的结论。有关点集的基本理论,称为点集论,而集合论讨论比点集更广泛、更抽象的一般集合。
集合论在几何、代数、分析、概率论、数理逻辑及程序语言等各个数学分支中,都有广泛的应用。集合的元素应该满足某些公理。可以建立各种集合论公理系统,例如1904年至1908年间,策梅洛(E.Zermelo,德,1871—1953)为避免罗素悖论提出的第一个集合论公理系统(ZF系统)。有关集合论基础的重要问题,至今还没有得到完满的解决。
集合论是从一个物件o和集合A之间的二元关系开始:若o是A的元素,可表示为o ∈ A。由于集合也是一个物件,因此上述关系也可以用在集合和集合的关系。另外一种二个集合之间的关系,称为包含关系。若集合A中的所有元素都是集合B中的元素,则称集合A为B的子集,符号为A ⊆ B。例如{1,2} 是{1,2,3} 的子集,但{1,4} 就不是{1,2,3} 的子集。依照定义,任一个集合也是本身的子集,不考虑本身的子集称为真子集。集合A为集合B的真子集当且仅当集合A为集合B的子集,且集合B不是集合A的子集。
数的算术中有许多一元及二元运算,集合论也有许多针对集合的一元及二元运算:
集合A和B的并集,符号为A ∪ B,是在至少在集合A或B中出现的元素,集合{1,2,3} 和集合{2, 3, 4} 的联集为集合{1, 2, 3, 4} 。
集合A和B的交集,符号为A ∩ B,是同时在集合A及B中出现的元素,集合{1,2,3} 和集合{2, 3, 4} 的交集为集合{2, 3} 。
集合U和A的相对差集,符号为U \ A,是在集合U中,但不在集合A中的所有元素,相对差集{1,2,3} \ {2,3,4} 为{1} ,而相对差集{2,3,4} \ {1,2,3} 为{4} 。当集合A是集合U的子集时,相对差集U \ A也称为集合A在集合U中的补集。若是研究文氏图,集合U为全集时,且可以借由上下文找到全集定义时,会使用A来代替U \ A。