贝叶斯 Thomas Bayes,英国数学家.1702年出生于伦敦,做过神甫.1742年成为英国皇家学会会员.1763年4月7日逝世.贝叶斯在数学方面主要研究概率论.他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论,对于统计决策函数、统计推断、统计的估算等做出了贡献.1763年发表了这方面的论著,对于现代概率论和数理统计都有很重要的作用.贝叶斯的另一著作《机会的学说概论》发表于1758年.贝叶斯所采用的许多术语被沿用.
他对统计推理的主要贡献是使用了"逆概率"这个概念,并把它作为一种普遍的推理方法提出来。贝叶斯定理原本是概率论中的一个定理,这一定理可用一个数学公式来表达,这个公式就是著名的贝叶斯公式。
贝叶斯
贝叶斯分类器
贝叶斯定理
贝叶斯统计
贝叶斯
英国数学家.1702年出生于伦敦,做过神甫.1742年成为英国皇家学会会员.1763年4月7日逝世.贝叶斯在数学方面主要研究概率论.他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论,对于统计决策函数、统计推断、统计的估算等做出了贡献.1763年发表了这方面的论著,对于现代概率论和数理统计都有很重要的作用.贝叶斯的另一著作《机会的学说概论》发表于1758年.贝叶斯所采用的许多术语被沿用.
贝叶斯分类器是在具有模式的完整统计知识条件下,按照贝叶斯决策理论进行设计的一种最优分类器。 方程式
贝叶斯定理也称贝叶斯推理,人们根据不确定性信息作出推理和决策需要对各种结论的概率作出估计,这类推理称为概率推理。
贝叶斯定理也称贝叶斯推理,早在18世纪,英国学者贝叶斯(1702~1761)曾提出计算条件概率的公式用来解决如下一类问题:假设H[,1],H[,2]…互斥且构成一个完全事件,已知它们的概率P(H[,i],i=1,2,…),现观察到某事件A与H[,1],H[,2]…相伴随而出现,且已知条件概率P(A/H[,i]),求P(H[,i]/A)。
贝叶斯公式(发表于1763年)为:P(H[,i]/A)=P(H[,i])P(A│H[,i])/[P(H[,1])P(A│H[,1])P(H[,2])P(A│H[,2])…]
这就是著名的“贝叶斯定理”,一些文献中把P(H[,1])、P(H[,2])称为基础概率,P(A│H[,1])为击中率,P(A│H[,2])为误报率[1]。