在△ABC的各边上向外各作等边△ABF,等边△ACD,等边△BCE。
如何证明:这3个等边三角形的外接圆共点?
思路1:利用四点共圆来证明三圆共点。这是证明拿破仑定理的基础。
证明:设等边△ABF的外接圆和等边△ACD的外接圆相交于O;连AO、CO、BO。
∴ ∠AFB=∠ADC=60°;
∵ A、F、B、O四点共圆;A、D、C、O四点共圆;
∴ ∠AOB=∠AOC=120°;
∴ ∠BOC=120°;
∵ △BCE是等边三角形
∴ ∠BEC=60°;
∴ B、E、C、O四点共圆
∴ 这3个等边三角形的外接圆共点。
结论:因为周角等于360°,所以,∠AOB=∠AOC=120°时,∠BOC就等于120°;用四点共圆的性质定理和判定定理来证明三圆共点的问题。 拿破仑定理证明图
以任意三角形的三边为边向外作等边三角形,则这三个等边三角形的中心的连线是一个等边三角形。
求证:上面3个等边三角形的中心M、N、P的连线构成一个等边三角形?
思路1:利用已有的三个圆和三个四点共圆来证明。
证明:设等边△ABD的外接圆⊙N,等边△ACF的外接圆⊙M,等边△BCE的外接圆⊙P
相交于O;连AO、CO、BO。
∵ A、D、B、O四点共圆;
A、F、C、O四点共圆
B、E、C、O四点共圆
∠AFC=∠ADB=∠BEC=60°;
∴ ∠AOB=∠AOC=∠BOC=120°;
∵ NP、MP、MN是连心线;
BO、CO、AO是公共弦;
∴ BO⊥NP于X;
CO⊥MP于Y;
AO⊥NM于Z。
∴ X、P、Y、O四点共圆;
Y、M、Z、O四点共圆;
Z、N、X、O四点共圆;
∴ ∠N=∠M=∠P=60°;
即△MNP是等边三角形。
思路2:证明原三角形重心至外围三个等边三角形几何中心距离相等。
拿破仑定理
左图中绿色辅助线利用中线特性求其长度,绿色角度值亦可用余弦定理求出,结合垂角,进一步利用余弦定理求出两几何中心距离,同理可证原重心与另外两个等边三角形的几何中心距离。
费马点也是证明拿破仑定理的好方法。
右图即是用费马点的性质来推导拿破仑定理的证明方法。 拿破仑三角形证明方法二
思路3:用相似证明三边相等
证明:如图1,分别以△ABC的边BC、AC、AB为等边三角形边长,向△ABC外作等边三角形(△BCC'、△ACA'、△ABB'),设这三个三角形的中心分别为D,E,F,